Skip to content

New Biofuel Process Dramatically Improves Energy Recovery

July 19, 2012

A new biofuel production process created by Michigan State University researchers produces energy more than 20 times higher than existing methods.

The results, published in the current issue of Environmental Science and Technology, showcase a novel way to use microbes to produce biofuel and hydrogen, all while consuming agricultural wastes.

A new biofuel production process created by Michigan State University researchers produces energy more than 20 times higher than existing methods.

A new biofuel production process created by Michigan State University researchers produces energy more than 20 times higher than existing methods.

Gemma Reguera, MSU microbiologist, has developed bioelectrochemical systems known as microbial electrolysis cells, or MECs, using bacteria to breakdown and ferment agricultural waste into ethanol. Reguera’s platform is unique because it employs a second bacterium, which, when added to the mix, removes all the waste fermentation byproducts or nonethanol materials while generating electricity.

Similar microbial fuel cells have been investigated before. However, maximum energy recoveries from corn stover, a common feedstock for biofuels, hover around 3.5 percent. Reguera’s platform, despite the energy invested in chemical pretreatment of the corn stover, averaged 35 to 40 percent energy recovery just from the fermentation process, said Reguera, an AgBioResearch scientist who co-authored the paper with Allison Spears, MSU graduate student.

“This is because the fermentative bacterium was carefully selected to degrade and ferment agricultural wastes into ethanol efficiently and to produce byproducts that could be metabolized by the electricity-producing bacterium,” Reguera said. “By removing the waste products of fermentation, the growth and metabolism of the fermentative bacterium also was stimulated. Basically, each step we take is custom-designed to be optimal.”

The second bacterium, Geobacter sulfurreducens, generates electricity. The electricity, however, isn’t harvested as an output. It is used to generate hydrogen in the MEC to increase the energy recovery process even more, Reguera said.

“When the MEC generates hydrogen, it actually doubles the energy recoveries,” she said. “We increased energy recovery to 73 percent. So the potential is definitely there to make this platform attractive for processing agricultural wastes.”

Reguera’s fuel cells use corn stover treated by the ammonia fiber expansion process, an advanced pretreatment technology pioneered at MSU. AFEX is an already proven method that was developed by Bruce Dale, MSU professor of chemical engineering and materials science.

Dale is currently working to make AFEX viable on a commercial scale.

In a similar vein, Reguera is continuing to optimize her MECs so they, too, can be scaled up on a commercial basis. Her goal is to develop decentralized systems that can help process agricultural wastes. Decentralized systems could be customized at small to medium scales (scales such as compost bins and small silages, for example) to provide an attractive method to recycle the wastes while generating fuel for farms.

[Source: MSU news release]

Advertisements
3 Comments leave one →
  1. July 19, 2012 6:39 pm

    This is an incredible breakthrough, if it can be scaled up.

    BUT… unless farmland is constantly renewed with organic material, the soil degrades and food production falls. Sos truly sustainable biofuel production has to take this into account.

  2. July 19, 2012 7:41 pm

    How ready is this to be integrated into the market? Sounds amazing!

  3. July 19, 2012 7:41 pm

    Reblogged this on TheEnergyExperts and commented:
    Very cool!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: